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Abstract. The ILP system Progol is incomplete in not being able to
generalise a single example to multiple clauses. This limitation is referred
as single-clause learning (SCL) in this paper. However, according to the
Blumer bound, incomplete learners such as Progol can have higher pre-
dictive accuracy while use less search than more complete learners. This
issue is particularly relevant in real-world problems, in which it is un-
clear whether the unknown target theory or its approximation is within
the hypothesis space of the incomplete learner. This paper uses two real-
world applications in systems biology to study whether it is necessary to
have complete multi-clause learning (MCL) methods, which is computa-
tionally expensive but capable of deriving multi-clause hypotheses that
is in the systems level. The experimental results show that in both ap-
plications there do exist datasets, in which MCL has significantly higher
predictive accuracies than SCL. On the other hand, MCL does not out-
perform SCL all the time due to the existence of the target hypothesis
or its approximations within the hypothesis space of SCL.

1 Introduction
Progol’s inverse entailment [10] is incomplete, as first pointed out by Yamamoto[19]:
Progol can only generalise a single example to a single clause, but not multiple
clauses. This type of entailment-incompleteness can be characterised as single-
clause learning (SCL). In contrast, entailment-complete methods are referred to
as multi-clause learning (MCL) in this paper.

1.1 Relationship between Completeness and Accuracy
It might be imagined that by achieving completeness of search, a learning al-
gorithm necessarily increases the accuracy of prediction on unseen examples.
However, the Blumer bound [2] indicates this is not necessarily the case.

Blumer bound m ≥ 1
ε (ln|H|+ ln 1

δ )

In the above m stands for the number of training examples, ε is the bound
on the error, |H| is the cardinality of the hypothesis space and (1 − δ) is the
bound on the probability with which the inequality holds for a randomly chosen
set of training examples. Note that when increasing |H| you also increase the
bound on the size of required training set. Given a fixed training set for which
the bound holds as an equality, the increase in |H| would need to be balanced by
an increase in ε, i.e. a larger bound on predictive error. Therefore on the face of
it, the Blumer bound indicates that incomplete learning algorithms have lower
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Fig. 1: Blumer bound for MCL and SCL Fig. 2: Learning Cycle in ILP

error bounds than complete ones. Specifically, the error bounds for SCL and
MCL are as given in equations (1) and (2), where N is the number of distinct
atoms derivable from a hypothesis language. As shown in Fig. 1, MCL’s error
bound grows exponentially with the increasing N; while SCL’s error bound is
linear with respect to N. In terms of running time, MCL takes much longer than
SCL due to a much larger |H|. Overall, the Blumer bound indicates that in the
case that the target theory or it is approximations are within both hypothesis
spaces, MCL is worse than SCL in terms of both running time and predictive
error bounds for a randomly chosen training set.

SCL’s Blumer bound ε ≥ 1
m (Nln2 + ln 1

δ ) (|H| = 2N ) (1)

MCL’s Blumer bound ε ≥ 1
m (2N ln2 + ln 1

δ ) (|H| = 22
N

) (2)

However, the Blumer bound only holds if the target theory or its approxi-
mation is within the hypothesis space for both algorithms. In the case that both
the target theory and its approximation are within the hypothesis space of the
complete learner but not within the hypothesis space of the incomplete learner,
the complete learner will have a lower error bound. For an artificial dataset, it
is possible to decide whether the target theory is within the hypothesis space
before learning. However, this is not the case for a real-world dataset, so one of
the motivations for this paper is to see whether completeness in learning does
lead to higher accuracy in at least one real-world dataset.

1.2 Experimental Comparisons between SCL and MCL

Within ILP much effort has been put into designing methods that are complete
for hypothesis finding. For example, ILP systems CF-Induction [7], XHAIL [15],
TAL [4] and MC-TopLog [13] were designed to overcome Progol’s entailment-
incompleteness. Indeed, different from SCL that restricts its hypothesis spaces
to single-clause hypotheses, MCL is able to suggest multi-clause hypotheses,
which are more compressive. The difference between single-clause and multi-
clause hypotheses can be analogous to that between reductionist and systems
hypotheses, which is explained later in Section 3.4. However, it is unclear whether
systems hypotheses are definitely better than reductionist hypotheses, especially
in real-world applications, while no direct comparison has been done before using
real-world datasets1. At the same time, Progol’s entailment-incompleteness does

1 Although [8] has compared CF-Induction to Progol, no predictive accuracies are
provided, but only learned hypotheses ranked by a probability measure. Although
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not stop it from being applied to real-world applications, because in certain cases,
it is possible to construct a multi-clause hypothesis by sequentially adding single
clauses. For example, a network of food webs, whose logical description consists
of multiple clauses, can be constructed from scratch using Progol5 as shown
in [16]. Therefore, another motivation for this paper is to use direct comparisons
on the same datasets to demonstrate the necessity of having MCL, which is much
more computationally expensive than SCL. We also analyse the cases when MCL
does or does not improve the learning results of SCL.

1.3 Two Biological Applications

The two biological applications studied in this work are of commercial interest to
Syngenta [1], which is a leading agribusiness company providing crop protection
and genetic solutions to growers. Developing tomato varieties optimised for shelf
life, flavour and nutritional quality is a major part of Syngenta’s breed selection
and seed development programme. The aim of applying an ILP approach in this
programme is to identify genetic control points regulating metabolic changes
that occur during tomato fruit ripening. The other application about predictive
toxicology is important to Syngentas crop protection initiatives. The objective is
to identify control points for metabolic pathway perturbations caused by a liver
tumour promoter (phenobarbital) in the rat. In both applications, the predictive
models derived would potentially influence the experimental design, thus saving
time, experimental cost and labour involved with cycles of trial runs.

Why ILP? For centuries scientists have used telescopes and microscopes to en-
hance their natural abilities to perceive the world. In an analogous way ILP can
be used to magnify the abilities of scientists to reason about complex datasets.
The biological applications to which ILP systems are applied in this work are
typical of situations in which biologists have limited comprehension of the impact
of perturbing a cellular pathway. The scale of the metabolic network and the in-
terconnections among various pathways add another challenge to overcome. For
example, during the tomato ripening, the genes that control the texture may
also indirectly affect the flavour. It would be undesirable to sacrifice the taste
of tomato to its firmness, although the firmness improves the shelf life. There-
fore, all pathways related to flavour, texture and colour have to be considered
together, which is difficult for biologists to conceptualise. Biologists therefore
need a testable hypothesis suggested by an ILP system in order to carry out
their studies. This is where ILP comes to their aid.

ILP has the advantage of suggesting readily comprehensible hypotheses, due
to the use of logic programs as a uniform representation for B, E and H. Bi-
ologists can then examine the hypotheses using their existing knowledge. Those
plausible hypotheses that are impossible to disprove can be considered for fur-
ther experimental validation, while a biologically non-meaningful hypothesis
may indicate that insufficient background knowledge has been provided. Be-
ing a knowledge discovery task it is often difficult to know a priori the depth of

Progol’s hypothesis is only ranked at 13th, it does not mean it has lower predictive
accuracy than the one ranked at the top.
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the knowledge required to circumvent such non-meaningful hypotheses. For ex-
ample, in the predictive toxicology application, there are candidate hypotheses
that explain the decrease of glucose and fructose from the reactions that pro-
duce them. However, in the given environment a decrease in glucose and fructose
can only be explained by the reactions consuming them. Therefore, we updated
the background knowledge with this knowledge as an integrity constraint to fil-
ter non-meaningful hypotheses. No matter whether a suggested hypothesis is
disproved by biologists’ existing knowledge or further tested by experiments,
the background knowledge needs to be updated. ILP techniques make such a
learning cycle feasible in a controlled manner. The diagram in Fig. 2 not only
shows such a learning cycle, but also highlights the fact that an ILP system does
need scientists’ help in providing/updating its input and interpreting its output.
This supports our analogy of ILP technique as tools, which enhance scientists’
capacity, rather than making scientists redundant.

Why not Technologies other than ILP? In the two applications considered,
the learning target is a reaction state that is not observable and could be simply
a ground fact. Therefore, using abduction alone seems sufficient. However, an
abductive system suggests all of the candidate hypotheses instead of the most
promising ones. Although, an algorithm for ranking abductive hypotheses has
already been proposed [8], it is not applicable to the current study due to the
sheer number of candidate hypotheses generated2. Hence, in this study com-
pression is used to select the most promising candidate hypotheses for further
interpretation by biologists and/or experimental validation.

Difference from Previous ILP Applications The use of transcriptomics
as well as metabolomics data in the modelling distinguishes the two applica-
tions from the previous biological application of ILP, e.g. MetaLog [17]. This
integrative omics approach is also different from the traditional approach used
by biologists, where only transcriptomic data from treated groups and the con-
trol group is compared to find differentially expressed genes (control points).
The integration of the metabolic data could take into account the effects due to
the post-translational modification and protein-protein interactions that would
otherwise not be captured by the differential gene expression alone.

1.4 Why These Two Applications?

The reason we chose these two applications to study the question in the title
is that they could potentially benefit significantly from multi-clause learning.
Firstly, the background knowledge is highly incomplete, since none of the reac-
tion states are known beforehand in the two applications. Secondly, the expla-
nations for each example inevitably involve multiple reaction states, which will
be explained later in Section 3. The same applications were also used in [12]
to study how varying the background knowledge affects the accuracy, but the
modelling has been extended by the more effective usage of transcriptomic data.

2 There are billions of candidate hypotheses, which exceeds the capacity of a Binary
Decision Diagram (BDD), thus the algorithm in [8] is practically inapplicable here.
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2 ILP Models
2.1 Examples
The aim in both applications is to hypothesise the changes in reaction states,
which reflect the genetic control of reactions. Although reaction states are not
observable, they affect the flux through reactions, which leads to changes in
metabolic abundance. Therefore, we can hypothesise the changes in reactions
states through the changes in metabolic abundances that are observable. Ac-
cordingly, changes in metabolic abundance are used as examples E for learning.
By comparing the treated group to the control group, three possible changes (i.e.
up, down and no-change) in metabolic abundance can be observed. In the tomato
application, the treated groups are obtained by knocking out specific genes re-
lated to the tomato ripening process, which results in ripening mutants, such
as colourless non-ripening (CNR), ripening-inhibitor (RIN) and non-ripening
(NOR); in the predictive toxicology application, the treated groups are Fischer
F344 rats treated with different doses of phenobarbital.

2.2 Hypothesis Space
The hypotheses are ground facts about reaction states. A reaction state can
be substrate limiting or enzyme limiting. Substrate limiting means that the flux
through a reaction is determined by the abundance of its substrates; while en-
zyme limiting implies that the flux through a reaction is controlled by the activity
of its catalysing enzymes. Depending on the activity of catalysing enzymes, en-
zyme limiting can be further divided into three states: catalytically increased,
catalytically decreased and catalytically no-change. These three states refer to
the relative changes in the treated group against the control group, therefore
they are not exactly the same as being activated or inhibited. For example, a
relatively decreased reaction state does not necessarily mean inhibited.

An enzyme limiting reaction is assumed to be under genetic regulation, while
a substrate limiting reaction is not, and its flux is affected by the nearby enzyme
limiting reactions. Therefore, a hypothesis he about enzyme limiting contains
more information than a hypothesis hs about substrate limiting. Thus the de-
scription length for different hypotheses is different. Specifically, if hs is encoded
by L bit, then k ∗ L bits are required for he, where k > 1. Considering each
metabolite’s abundance is controlled by one regulatory reaction, each example
is also encoded by L bits to make compression achievable. The difference in the
description length can also be explained by the information theory as follows.
There are fewer reactions regulated by genes directly than indirectly, therefore
the more frequent hs is encoded using shorter description length than he to
achieve minimum description length.

2.3 Background Knowledge

Regulation Rules Fig. 3 lists the seven regulation rules suggested by biologists.
These rules tell how changes in reaction states affect metabolic abundances. For
example, if a reaction is catalytically increased, which means the flux through
that reaction increases, then the concentration of its product goes up, while its
substrate’s concentration goes down because of the quicker consumption. These
are encoded as b1 and b2 in Fig. 3. The rules b1 to b6 are all about enzyme limiting,
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and they are non-recursive, because the change in the substrate concentration
will not affect the flux through the reaction but the enzyme activity itself. In
contrast, the rule about substrate limiting (e.g. b7) is recursive, because the
substrate concentration would determine the flux through the reaction therefore
affect the abundance of the product. These recursive rules essentially model the
indirect effect of gene regulation.

These regulation rules seem to consider only one aspect, either enzyme limit-
ing or substrate limiting, while in reality, both substrate abundances and enzyme
activities may act together. However, it is unnecessary to consider the rules about
the cumulative effect in our models, because the aim is to identify the dominating
effect that is controlling the flux through a reaction, rather than knowing exactly
what happens for each reaction. Similarly, as a node in a well-connected network,
a metabolite’s concentration is not just affected by one reaction’s flux, but all
reactions that consume or produce it. It seems the regulation rules should also
capture this and consider how the fluxes from different reactions are balanced.
However, no matter how fluxes from different branches are balanced, there is one
branch whose effect dominates and leads to the final observed change. Therefore,
the rules in Fig. 3 are sufficient for our models.

b1: concentration(Metabolite, up, T ime) ← produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b2: concentration(Metabolite, down, T ime) ← consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataIncreased,Time).

b3: concentration(Metabolite, down, T ime) ← produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b4: concentration(Metabolite, up, T ime) ← consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataDecreased,Time).

b5: concentration(Metabolite, no change, T ime) ← produced by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b6: concentration(Metabolite, no change, T ime) ← consumed by(Metabolite,Reaction),
reaction state(Reaction,enzymeLimiting,cataNoChange,Time).

b7: concentration(Metabolite1, Change, T ime) ←
produced by(Metabolite1,Reaction), reaction state(Reaction, substrateLimiting, ,Time),
consumed by(Metabolite2,Reaction), concentration(Metabolite2,Change,Time).

Fig. 3: Regulation Rules

Metabolic Networks For the tomato application, the metabolic network is
derived from the LycoCyc database [9], which contains 1841 reactions, 1840
metabolites and 8726 enzymes. For the predictive toxicology application, it is
obtained from the rat specific network in the KEGG database [14], which consists
of 2334 reactions, 1366 metabolites and 1397 enzymes. In both applications, each
reaction is considered as reversible. Therefore, the actual number of reactions
Nr are doubled in the models. Since a subset of these reactions’ states have to
be hypothesised in order to explain the observed changes, the size of hypothesis
spaces for the two applications are 24Nr , where the number 4 corresponds to
the four possible reaction states (i.e. substrate limiting, catalytically increased,
catalytically decreased and catalytically no-change).

Transcript Profiles Transcript profiles represent expression data for the genes
encoding the enzymes. However, gene expression alone is not always indica-
tive of the reaction states. This is due to the other cellular processes, such as
post-translational modification that could change the activity of the enzyme.



7

Therefore, instead of using transcription profiles as training examples, they were
used as an integrity constraint in our model to filter hypotheses. Any hypothe-
ses about enzyme limiting have to be consistent with their gene expression data.
Specifically, if a reaction state is hypothesised to be catalytically increased, its
expression data, if available, should be increased and vise-versa. For example,
without considering gene expression data, the four hypotheses shown in Fig. 4
are all candidates. However, the hypotheses (b) and (c) have inconsistent re-
action states (arrow color) with the change in the expression (colored squares),
hence these two hypotheses will be filtered after applying the integrity constraint
about gene expression.

Integrity Constraint Apart from the integrity constraint about gene expres-
sion, there is another constraint about reaction states: a reaction can not be in
different states at the same time. Please note that, there is no constraint that a
metabolite’s concentration cannot be both up and down at the same time. Be-
cause as explained earlier, the model is about the dominated branch that leads
to the final observation, while it is possible that different branches to the same
metabolite have different contributions of fluxes.

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 

ACONITATE-DEHYDR-RXN 

CITSYN-RXN 

MALATE-DEH-RXN 

(a)!        (b) 
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Citrate 

Oxaloacelate 

Cis-aconitate 

Malate 

Citrate 
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Malate 
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(c)           (d) 

Fig. 4: Candidate Hypotheses for the decreased Citrate (Tomato Application). A re-
action arrow is in double direction if its state is not hypothesised, otherwise it is not
just in one direction, but also changed in the line style. The reaction states of sub-
strate limiting, catalytically decreased and increased are respectively represented by
thicker, dashed and double lines. Measured metabolites are highlighted in grey, and
their corresponding values are annotated in their upper right corner. Gene expression
levels are represented by the small triangles next to the reaction arrows. The upward
and downward triangles mean increased and decreased.

3 Single-clause Learning vs Multi-clause Learning

The term ‘single-clause learning’(SCL) comes from the entailment-incompleteness
of Progol. As first pointed out by Yamamoto [19], the inverse entailment opera-
tor in Progol can only derive hypotheses that subsume an example e relative to
B in Plotkin’s sense. This entailment-incompleteness restricts its derivable hy-
pothesis to be a single clause, and that clause is used only once in the refutation
proof of the example e. Thus we define SCL and MCL as follows. More details
about SCL and MCL can be found in [13].

Definition 1. Let ci be a clause, which is either from background knowledge
B or hypothesis H. Suppose R = 〈c1, c2, ..., cn〉 is a refutation sequence that
explains a positive example e. Let N be the number of ci in R that is from H. It
is single-clause learning (SCL) if N = 1; while it is multi-clause learning (MCL)
if N ≥ 1.
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3.1 Examples of MCL
An example of learning odd-numbers was used by Yamamoto [19] to demonstrate
Progol’s entailment-incompleteness. This example involves mutual recursion, so
that the target clause h needs to be applied several times in a refutation proof
for the example odd(s(s(s(0)))). According to the definition above, this learn-
ing task is MCL, even though there is only one target clause to be learned.
Progol’s entailment-incompleteness is not only to do with mutual recursion, but
also related to the issue of incomplete background knowledge, such as the two
applications studied in this paper.

3.2 MCL != Global Optimisation
The term ‘learning multiple clauses’(LMC) is used to describe a global-optimisation
approach, in which multiple clauses that compressed from the whole set of ex-
amples are refined together, as opposed to a local-optimisation approach like
the covering algorithm, where clauses compressed from a subset of examples are
added to the final H iteratively. However, learning multiple clauses (LMC) re-
ferred in the global-optimisation approach and the mutli-clause learning (MCL)
defined in this paper are related to different issues. LMC is related to the issue
of selecting hypotheses globally rather than locally. The hypotheses from which
it selects can be derived either by MCL or SCL. Even if a learning algorithm’s
hypothesis space consists of single clauses derived by SCL, its final hypothesis
may still have multiple clauses, which are aggregated from single clauses gen-
eralised from different examples. In contrast, MCL is to do with generalising
an example to multiple clauses, rather than a single clause. It can be combined
with a selection method that is either global or local. Specifically, after deriving
all candidate hypotheses using a MCL method, the covering algorithm is still
applicable to greedily choosing a hypothesis which is locally most compressed.

3.3 Difference in Hypothesis Space
SCL’s hypothesis space is a subset to that of MCL, and their difference is not
insignificant. Specifically, the upper bound on the hypothesis space of SCL is
O(2N ), where N is the number of distinct atoms derivable from a hypothesis

language. In contrast, it is O(2 2N ) for MCL, because it does not ignore the
hypotheses with dependent clauses. Such a large hypothesis space makes MCL
not PAC-learnable (Probably approximately correct learnable [18]). Because the
number of examples m grows exponentially with increasing N, rather than poly-
nomial as that in SCL, which can be seen by rewriting SCL and MCL’s Blumer
bounds as m ≥ 1

ε (Nln2+ln 1
δ ) and m ≥ 1

ε (2
N ln2+ln 1

δ ), respectively. Even when
N is small and fixed for a particular learning problem, MCL’s hypothesis space
is still much larger than that of SCL. That is why it is particularly important
for a multi-clause learner to bound its search space like that in MC-TopLog.

3.4 Reductionist vs. Systems Hypothesis
SCL can only generalise an example to a single clause, thus its hypotheses are in
the style of ‘H1 causes O1, ... Hn causes On’, where Oi represents an observation
and each Hi is not necessarily related to the others. This kind of hypotheses can
be referred to as reductionist hypotheses. In contrast, MCL is able to generalise
an example to mutiple clauses so that its hypotheses are rich enough to be in
the systems-level, and they are in the style of ‘H1, H2...Hj together cause O1,
O2 ... Oi’. Table 1 summarises the differences between SCL and MCL.



9
Entailment-Incomplete Entailment-Complete

Single clause per example Multiple clauses per example
Constrained hypothesis space Less constrained hypothesis space

Reductionist Systems
H1 causes O1 ... Hn causes On H1, H2...Hm together cause O1, O2 ... On

Table 1: Single-clause Learning vs. Multi-clause Learning

3.5 SCL and MCL in the Context of the Two Applications

This subsection uses specific examples from the two applications to exemplify
what has been discussed so far in this section. The two figures in Fig. 5 are from
the predictive toxicology application. They show two possible explanations for
the increase in the abundances of glutathione and 5-oxoproline. Fig. 5(a) says
it is the reaction ‘L-GLU:L-CYS γ-LIGASE’ that is catalytically increased, which
indirectly leads to the increase of glutathione and 5-oxoproline. In contrast, it is
two different reactions whose activation that results in the increased glutathione
and 5-oxoproline, as suggested by the two double line arrows in Fig. 5(b).

The explanation depicted in Fig. 5(a) can be encoded by a logic program
Hmc = {h1, h2, h3}, where hi is in Fig. 6(a). Similarly, the explanation in
Fig. 5(b) can be encoded as Hsc = {h4, h5}. Although both Hmc and Hsc con-
sist of multiple clauses, Hsc is aggregated from two single-clause hypotheses:
Hsc1 = {h5} and Hsc2 = {h4}, which are respectively generalised from e1 and
e2. In other words, each clause in Hsc is derived independently from different
examples, and each alone is sufficient to explain an example. In contrast, Hmc

comes from two multi-clause hypotheses: Hmc1 = {h1, h3} and Hmc2 = {h1, h2},
which are also generalised from e1 and e2, respectively. However, none of the
clauses in Hmc is able to explain any examples alone without other clauses.

In the context of the two applications, single-clause learning means hypothe-
sising a single reaction state for an example. This limitation restricts its derivable
explanations to the reactions that directly connect to the observed metabolites.
For example, the two double-line arrows in Fig. 5(b) are connected directly to
glutathione and 5-oxoproline, whose abundances are measurable. In contrast,
a multi-clause learner is able to explore any possible regulatory reactions that
are several reactions away from the observed metabolites. For example, the re-
action arrow with double-line in Fig. 5(a) is not directly connected to either
glutathione or 5-oxoproline. However, the regulatory effect of this reaction is
passed through the metabolite γ-glutamylcysteine, which is a common substrate
of the two substrate limiting reactions (‘γ-L-GLU-L-CYS:GLY LIGASE’ and ‘5-

GLUTAMYLTRANSFERASE’). The hypothesis Hmc in Fig. 5(a) agrees with the
one suggested by biologists [5], but it is not derivable by SCL.

Glutamate 

!-Glutamylcysteine 

Glutathione 

Glycine 

L-GLU:L-CYS !-LIGASE 

5-GLUTAMYLTRANSFERASE 

!-L-GLU-L-CYS:GLY LIGASE 

Cysteine 

5-oxoproline 

(a) Multi-clause hypotheses H1

Glutamate 

!-Glutamylcysteine 

Glutathione 5-oxoproline 

Glycine 

L-GLU:L-CYS !-LIGASE 

5-GLUTAMYLTRANSFERASE 

!-L-GLU-L-CYS:GLY LIGASE 

Cysteine 

(b) Single-clause hypotheses H2

Fig. 5: Explanations for the increase of Glutathione and 5-oxoproline
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h1: reaction state(‘γ-L-GLU-L-CYS:GLY LIGASE’, substrateLimiting, , day14).
h2: reaction state(‘5-GLUTAMYLTRANSFERASE’, substrateLimiting, , day14).
h3: reaction state(‘L-GLU:L-CYS γ-LIGASE’, enzymeLimiting, cataIncreased, day14).
h4: reaction state(‘5-GLUTAMYLTRANSFERASE’, enzymeLimiting, cataIncreased, day14).
h5: reaction state(‘L-GLU:L-CYS γ-LIGASE’, enzymeLimiting, cataIncreased, dat14).

(a) Predictive Toxicology Application

h6: reaction state(‘CITSYN-RXN’, enzymeLimiting, cataIncreased, ‘NOR Late’).
h7: reaction state(‘MALATE-DEH-RXN’, substrateLimiting, , ‘NOR Late’).
h8: reaction state(‘ACONITATE-DEHYDR-RXN’, enzymeLimiting, cataDecreased, ‘NOR Late’).

(b) Tomato Application
Fig. 6: Candidate Hypothesis Clauses

In terms of compression, Hmc is more compressive than Hsc, according to
the description length defined in the previous section. Intuitively, Hmc is more
compact since it suggests a single control point for two observed metabolites,
while Hsc involves two control points for the same number of observations. On
the other hand, Hsc is a reductionist hypothesis while Hmc is in the systems
level. Because Hsc suggests that h4 causes e1 and h5 causes e2. In contrast, Hmc

says it is the combination of h1, h2 and h3 that leads to e1 and e2. The higher
compression of Hmc can also be explained by the fact that it is a systems-level
description, which is more compact than the non-systems one.

3.6 Reducing MCL to SCL

As mentioned earlier in the introduction, it is possible to construct a multi-clause
hypothesis by sequentially adding single-clauses. The hypothesis H4a drawn in
Fig. 4(a) gives such an example. H4a consists of two clauses h6 and h7, which are
in Fig. 6(b). The single clause h6 can be derived from the example of decreased
Citrate. After h6 is added to the background knowledge, another clause h7 can
be derived from the example of increased Malate. Despite the fact that H4a can
be sequentially constructed using Progol5, Progol5 does not necessarily suggest
this hypothesis, but instead suggests H4d={h8} shown in Fig. 4(d). Whether
a MCL problem can be reduced to a SCL problem depends on the degree of
incompleteness in the background knowledge and the distributions of given ex-
amples. For the two applications studied in this paper, imagine an extreme case
where all metabolite abundances are observable, then we can simply apply SCL
to reconstruct each reaction state. However, not all metabolite abundances are
measurable due to technological limitations.

4 Experiments
The two null hypotheses to be tested are: (1) MCL does not have higher predic-
tive accuracies than SCL for any real-world datasets; (2) MCL always has higher
predictive accuracies than SCL for all real-world datasets.

4.1 Materials
In the tomato application, transcript and metabolite profiles for three devel-
opmental stages (Early, Mid and Late) were obtained for wild type and three
mutants (CNR, RIN, NOR) from Syngenta. This gave nine datasets in total
(3 stages*3 mutants). In the cancer application, transcript and metabolite pro-
files were obtained for 1, 3, 7 and 14 days’ post treatment, which were from a
published study [5]. All the materials used in the experiments can be found at
http://ilp.doc.ic.ac.uk/mcTopLog.
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4.2 Methods
Progol5 [11] and MC-TopLog [13] were used to represent SCL and MCL re-
spectively. Leave-one-out cross validation was used to compute the predictive
accuracies. The closed world assumption applied during the testing phase was
that “a reaction state is substrate limiting if it is not hypothesised”. For the
comparison of running time, we compared the number of search nodes instead.
Because Progol5 and MC-TopLog’s running time are not comparable. Specifi-
cally, Progol5 was implemented in C, while MC-TopLog used Prolog and was
executed using YAP. Since YAP is optimised towards efficiency, it is much faster,
thus MC-TopLog’s running time is even shorter than Progol5 despite of a much
larger search space. For example, in the experiments, MC-TopLog takes maxi-
mum 10 mins for each run, while Progol 5 can take up to 3 hours.

4.3 Predictive Accuracies
As shown in the tables below, there are two datasets (i.e. ‘NOR Mid’ and
‘NOR Late’) in the tomato application and one dataset (i.e. ‘Day 3’) in the pre-
dictive toxicology application, where MC-TopLog’s accuracies are significantly
higher than that of Progol5 at the 95% confidence level (i.e. p-value≤ 0.05).
While for the rest of the datasets, the two systems have the same or similar ac-
curacies. Therefore both our null hypotheses are rejected by the accuracy results:
(1) there is at least one dataset in both applications where MCL has significantly
higher accuracy than SCL; (2) MCL does not outperform SCL all the time in
terms of predictive accuracies. The explanation for such results will be given later
after seeing a concrete example of the hypotheses derived by the two systems.

Timepoint default(no change),% Progol,% MC-TopLog,% p-value
CNR Early 63.64 86.36±7.32 81.82±8.22 0.576
CNR Mid 36.36 86.36±7.32 86.36±7.32 1.000
CNR Late 40.90 90.91±6.13 90.91±6.13 1.000
NOR Early 86.36 86.36±7.32 86.36±7.32 1.000
NOR Mid 50.00 68.18±9.93 86.86±7.32 0.042
NOR Late 31.82 68.18±9.93 86.36±7.32 0.042
RIN Early 100.00 100±0.00 100±0.00 1.000
RIN Mid 90.91 90.91±6.13 90.91±6.13 1.000
RIN Late 36.36 77.27±8.93 77.27±8.93 1.000

Table 2: Predictive accuracies with standard errors in Tomato Application

Timepoint default(no change),% Progol,% MC-TopLog,% p-value
Day 1 55.77 63.46±6.68 73.08±6.15 0.058
Day 3 30.77 44.23±6.89 59.62±6.80 0.010
Day 7 40.38 53.85±6.91 59.62±6.80 0.182
Day 14 48.08 61.54±6.75 63.46 ±6.67 0.569

Table 3: Predictive accuracies with standard errors in Predictive Toxicology Application

4.4 Hypothesis Interpretation
This subsection exemplifies the different hypotheses suggested by Progol5 and
MC-TopLog. The dataset used here is the abundances of six metabolites (Cit-
rate, Malate, GABA, Alanine, Serine and Threonine) measured in the mutant
‘CNR Late’ of the tomato application. MC-TopLog suggests a single control
point to co-regulate the six metabolites. As can be seen in Fig. 7(a), there is
only one ground fact with enzyme limiting, while the rest are about substrate
limiting, which are also indispensable in explaining the six observations together
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rs(reversed-‘GLYCINE-AMINOTRANSFERASE-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘MALSYN-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘ALANINE–GLYOXYLATE-AMINOTRANSFERASE-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘GLYOHMETRANS-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘THREONINE-ALDOLASE-RXN’,substrateLimiting, ,‘CNR L’).
rs(‘GABATRANSAM-RXN’,substrateLimiting, ,‘CNR L’).
rs(reversed-‘RXN-6902’,substrateLimiting, ,‘CNR L’).

(a) MC-TopLog’s Hypothesis
rs(‘2.6.1.18-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(reversed-‘5.1.1.18-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘THREDEHYD-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(reversed-‘ACONITATEDEHYDR-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).
rs(‘GABATRANSAM-RXN’,enzymeLimiting,cataIncreased,‘CNR L’).
rs(‘1.1.1.39-RXN’,enzymeLimiting,cataDecreased,‘CNR L’).

(b) Progol’s Hypothesis
Fig. 7: Hypotheses Comparison. The predicate ’rs’ is short for ’reaction state’

.
with the suggested control point. For the same set of observations, Progol sug-
gests a reductionist hypothesis with six control points, since it hypothesises one
control point for each metabolite. As can be seen in Fig. 7(b), all the ground
facts there are about enzyme limiting.
Biological Significance Fig. 8(a) visualises the hypothesis in Fig. 7(a) sug-
gested by MC-TopLog. It is the reaction ‘GLYCINE-AMINOTRANS-RXN’ that
is suggested to be the control point for the six observations. This hypothesis
is particularly interesting to biologists. Firstly, it is suggested in [6] that the
abundance of organic acids is controlled via TCA-Cycle, while this hypothesis
indicates that the flux through the Malate can also be regulated by Glyoxylate
shunt, independently of TCA cycle. Secondly, this hypothesis involves three in-
tricately connected pathways (TCA-Cycle, Glyoxylate Shunt and GABA Shunt
pathway), which is difficult for human beings to come up with. Different from
the multi-clause hypothesis depicted in Fig. 5(a) which has been confirmed by
biologists [5], no previous study is available to confirm the one in Fig. 8(a), thus
new biological experiments will be designed to test this hypothesis. Thirdly, this
hypothesis could be of industrial interest since higher organic acid content in
particular Malate is a commercially important quality trait for tomatoes [3].

4.5 Explanations for the Accuracy Results
The higher predictive accuracies by MC-TopLog in the three datasets can be
explained by the fact that in those datasets neither target hypotheses nor their
approximations are within the hypothesis space of Progol. Although the tar-
get hypotheses are unknown for the two real-world applications, the hypotheses
searched by Progol are less likely to be the targets. Because as mentioned before,
Progol’s hypotheses are not just reductionist, but also restricted to the reactions
directly connected to the observed metabolites, so that they are usually specific
to the example that they are generalised from. Such specific hypotheses may
not be generalisable to the test data, thus they fail to predict the test data.
In constrast, the multi-clause hypotheses suggested by MC-TopLog are not just
in the systems-level, but also more compressive. For example, the multi-clause
hypothesis in Fig. 8(a) generalises six examples. When any of the six examples
are left-out as test data, they can always be predicted by the hypothesis gen-
eralised from the remaining five examples. That is why MC-TopLog achieves
higher accuracy for the three datasets.
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GLYCINE 

AMINO  

TRANS-RXN 

Glyoxylate Malate 

Oxaloacetate 2-oxoglutarate Glycine 

Threonine 

Alanine Serine GABA   Citrate 

(a)

Pyruvate 

Malate 

Alanine 

MALATE 
DEHYDROGENASE 

(b)
Fig. 8: (a) Three organic acids (Citrate, Malate, GABA) and three amino acids (Ala-
nine, Serine and Threonine) are hypothesised to be controlled by the reaction ‘GLYCINE-

AMINOTRANS-RXN’. The decrease in the flux through this reaction (represented by
the dashed line) would decrease the abundance of the products (Glycine and 2-
oxoglutarate). This would subsequently affect the flux through the Glyoxylate shunt
and GABA shunt pathways and a part of the TCA cycle involved with the synthesis
of organic acids. Specifically, decrease in the flux would lead to the accumulation of
glyoxylate and a reversed flux to Malate via the ‘Malate Synthase’ reaction would lead
to an accumulation of Malate. On the other hand, glycine’s production would be ham-
pered and is reflected in the decreased abundance of the three amino acids that are
being synthesized by glycine in different condensation reactions. (b) Malate and Ala-
nine are suggested to be controlled by the reaction catalysed by malate dehydrogenase.

On the other hand, it turns out that the systems hypotheses suggested by
MC-TopLog does not always have higher predictive accuracies than the reduc-
tionist hypotheses suggested by Progol. That is because there do exist good
approximations to the targets within the hypothesis space of Progol. Fig 8(b)
shows such a good approximation, where a pair of metabolites are suggested to
be co-regulated by Malate Dehydrogenase. This systems hypothesis is essentially
derived by aggregating two reductionist hypotheses. Specifically, in Fig 8(b),
the dash line denoting catalytically decrease is hypothesised from the increased
Malate, while the solid line representing substrate limiting is derived from the
decreased Alanine. Although the number of co-regulated metabolites in Fig 8(b)
is not as large as the one in Fig. 8(a), it manages to predict one of the co-
regulated metabolites when it is left-out as test data. There are other similar
small co-regulated modules in Progol’s hypothesis space, so that they together
approximate the large module (Fig. 8(a)) suggested by MC-TopLog. That is
why in the dataset like ‘CNR Late’ MC-TopLog does not outperform Progol5.
In fact, the hypotheses with small co-regulated modules are not disprovable by
the existing knowledge. Additionally, there is no evidence that a control point
regulating more metabolites is definitely better. Nevertheless, biologists tend
to follow Occam’s razor and prefer a more compressive hypothesis with fewer
control points.

There is even one dataset ’CNR Early’ where Progol has a slightly higher
accuracy than MC-TopLog. This is consistent with the Blumer bound argument,
where it indicates that MC-TopLog is in the risk of overfitting when it searches
within a much larger hypothesis space to find a high-compression hypothesis. In
the context of the two applications, the high-compression hypotheses correspond
to the control points that co-regulates as many metabolites as possible.
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4.6 Search Space and Compression
Table 4 shows that MC-TopLog always has a larger search space than Pro-
gol5. This is consistent with the theoretical analysis discussed earlier. The larger
search space make it possible for MC-TopLog to find hypotheses with higher
compression than Progol5. Indeed as shown in Table 4, hypotheses suggested
by MC-TopLog always has higher compression than those suggested by Progol.
In that table, the compression of a hypothesis H is defined as Np − Nn −DL,
where Np and Nn are respectively the number of positive and negative exam-
ples covered by H, while DL is short for description length. As explained in
Section 2.2, the DL of a hypothesis about substrate limiting and the one about
enzyme limiting are respectively L and k ∗L. Here we choose k = 10 and L = 1,
therefore a compression value of 10 in the Table 4 means only one example is
compressed by H. Note that more compressive hypotheses does not necessarily
correspond to higher accuracies, as you can see when lining up Table 4 with
Table 2, This implies that a more complete search to find a more compressive
hypothesis does not necessarily gain higher accuracies, which is consistent with
the Blumer bound argument. However this does not mean that compression is
not a good heuristic for search, but is related to other problems like overfitting.

Timepoint
Compression Number of Search Nodes

Progol MC-TopLog Progol MC-TopLog

CNR Early 0 49 352 1240
CNR Mid 0 33 350 11890
CNR Late 10 75 322 3654
NOR Early 10 30 318 411
NOR Mid 0 34 352 10851
NOR Late 0 13 354 14032
RIN Early 20 40 312 350
RIN Mid 20 40 312 793
RIN Late 0 14 354 14584

Table 4: Comparing Compression and Search nodes (Tomato Application)

5 Conclusions and Future Work
The use of ILP in the two real-world problems supported efficient analysis of
the biological data. Additionally, interesting hypotheses were produced that are
different from what the biologists had stated prior to the machine learning. In
both applications, MC-TopLog’s hypotheses were also compared against human
hypotheses provided by the Syngenta project leaders. It was noted that the
human hypotheses were closer in form to the reductionist hypotheses generated
by Progol. In several cases the MC-TopLog were both more complex and more
accurate than the human ones and indicated quite distinct control points within
the relevant sub-networks. The plausible hypotheses that do not have support
from existing studies will be tested experimentally in future.

As shown by our experiments, there do exist datasets in which systems hy-
potheses derived by MCL have significantly higher predictive accuracies than the
reductionist ones derived by SCL. On the other hand, MCL does not outper-
form SCL all the time due to the existence of good approximations to the target
hypothesis within SCL’s hypothesis space. In this case, it seems not worth to
apply MCL considering that MCL is much more computationally expensive than
SCL. However, for real-world applications whose target theories are unknown,
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it is worth trying MCL, as there are datasets where neither the target theory
nor its approximations exist within the hypothesis space of SCL, thus MCL can
improve the learning results of SCL.
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