
MC-TopLog: Complete Multi-clause Learning
Guided by a Top Theory

Stephen Muggleton, Dianhuan Lin and Alireza Tamaddoni-Nezhad

Department of Computing, Imperial College London

Abstract. Within ILP much effort has been put into designing methods
that are complete for hypothesis finding. However, it is not clear whether
completeness is important in real-world applications. This paper uses a
simplified version of grammar learning to show how a complete method
can improve on the learning results of an incomplete method. Seeing
the necessity of having a complete method for real-world applications,
we introduce a method called >-directed theory co-derivation, which is
shown to be correct (ie. sound and complete). The proposed method has
been implemented in the ILP system MC-TopLog and tested on gram-
mar learning and the learning of game strategies. Compared to Progol5,
an efficient but incomplete ILP system, MC-TopLog has higher predic-
tive accuracies, especially when the background knowledge is severely
incomplete.

1 Introduction

As first pointed out by Yamamoto [22], hypotheses derivable from Progol [11]
are restricted to those which subsume E relative to B in Plotkin’s sense [17].
This type of incompleteness can be characterised as deriving only single-clause
hypotheses. In this paper, we compare entailment-incomplete single-clause learn-
ing systems to entailment-complete multi-clause learning systems.

Yamamoto uses the learning of odd-numbers to demonstrate Progol’s incom-
pleteness. His example involves recursion and mutually dependent predicates
(odd and even), making it unclear whether only applications with these proper-
ties might be affected by this type of incompleteness. To the authors’ knowledge
it has not subsequently been demonstrated conclusively that the incomplete-
ness of single-clause learning noticeably restricts the application of single-clause
learners. It might reasonably be supposed that in real-world applications learned
theories can always be built by sequentially adding single clauses.

Grammar learning is central to language translation software, automated
booking systems and grammar checking for word processes. Section 2 uses a
simplified version of grammar learning, which is artificially designed and does
not involve recursion or mutually dependent predicates, to show how a com-
plete method can improve the learning results of an incomplete method. This
is further demonstrated in section 4 via experiments with two real-world data
sets. More experiments with real-world applications can be found in [9], where
target hypotheses are unknown for knowledge discovery tasks. The focus of this
paper is to introduce a new complete approach called >-directed theory co-
derivation(>DTcD). The following two subsections highlight the two key fea-
tures that distinguish >DTcD from other multi-clause learning methods.

2

1.1 Common Generalisation

The idea of common generalisation was first introduced in Plotkin’s Least Gen-
eral Generalisation (LGG) [17] and Reynolds’ Least Common Generalisation
(LCG) [21]. This idea is used in this paper to extend >DTD (>-directed the-
ory derivation) to >DTcD. We refer co-generalisation for methods that restrict
their search spaces to common generalisations of multiple examples, as opposed
to solo-generalisation for methods that generalise a single example.

Although doing co-generalisation can lead to higher efficiency, it has been
introduced in few ILP systems. Among the systems based on Inverse Entail-
ment (IE) [11], ProGolem [15] extending from Golem [13] is the only one that
can do co-generalisation. Unfortunately, it suffers from similar type of incom-
pleteness as that in Progol. While all the existing complete methods that are
IE based can only do solo-generalisation, e.g. CF-Induction [5], XHAIL [20]
and IMPARO [7]. These are reflected in table 1, which classifies several typical
ILP systems based on their generalisation methods. Although CF-Induction and
XHAIL can generalise multiple examples all at once, their search spaces are not
bound to the common generalisations, therefore they are not in the category of
co-generalisation.

The inability to do co-generalisation is less of an issue for ILP systems like
HYPER [3] and TILDE [1], which use all the training examples to guide a top-
down search. Also the generalisation methods in these systems are not IE based,
thus they do not suffer from Progol’s incompleteness. On the other hand, they
lose the advantage provided by IE, that is, their search spaces are not bound to
those hold for B ∧H |= E. Also, these systems cannot handle abduction, thus
not applicable to the grammar learning example given in this paper, where the
background knowledge is incomplete.

1.2 Top Theory and TopLog Family

A top theory > is a logic program representing a declarative bias. Compared
to the mode declaration [11] used in many ILP systems, a top theory has the
advantage of encoding a strong declarative bias. Although there exists other
forms of declarative bias that are comparable to the top theory in terms of their
expressive power in encoding strong declarative bias, they are in the meta-level,
such as antecedent description language (ADL) [4] and its extension DLAB [18].
In contrast, a top theory is in the object-level as a logic program. This makes it
possible for a top theory to be reasoned directly with background knowledge, so
that the derived hypotheses are bound to those hold for B ∧H |= E. In other
words, a top theory not only provides a mechanism for naturally encoding the
strong declarative bias, but also facilitate a method to bound the search space.
A top theory is also similar to Spectre’s [2] starting-point theory (an overly

Solo-Generalisation Co-Generalisation

Single-clause
TopLog LGG and LCG
Progol Golem and ProGolem
FOIL

Multi-clause

CF-Induction
XHAIL
IMPARO HYPER

TAL TILDE
MC-TopLog (>DTD) MC-TopLog (>DTcD)

Table 1: Classifying ILP systems based on their generalisation methods

3

general theory to be unfolded), but the top theory make a clear distinction
between terminal and non-terminal predicates. This is a powerful mechanism
for distinguising between search control and the object language.

A top theory was first introduced in a method called >-directed hypothe-
sis derivation (>DHD), which is implemented in the ILP system TopLog [14].
To overcome TopLog’s limitation of single-clause learning, >DHD is extended
to >DTD. The resulting system is named MC-TopLog (Multi-clause TopLog).
>DTD and >DTcD correspond to two different learning modes in MC-TopLog:
generalising single example or multiple examples. Inherited from >DHD, both
>DTD and >DTcD use a top theory to represent their declarative bias.

2 Multi-clause Learning vs. Single-clause Learning
Progol’s entailment-incompleteness can be characterized by single-clause learn-
ing. Because a hypothesis H will not be derived by Progol, unless it subsumes
an example e relative to B in Plotkin’s sense. This condition requires H to be a
single clause, and this clause is used only once in the refutation of the example
e. This leads to our definition of single-clause and multi-clause learning as that
in Definition 1. Please note that they are defined in terms of the number of hy-
pothesised clauses used in a refutation of an example, rather than the number of
clauses in H. Accordingly, even if the number of clauses in H is only one, it can
still be multi-clause learning. For example, in Yamamoto’s example of learning
odd-numbers, the hypothesised clause odd(s(X))← even(X) is used twice when
proving the positive example odd(s(s(s(0)))), thus deriving such a hypothesis H
from that example is multi-clause learning even though H appear to be a single
clause. And vice versa: even if the number of clauses in H is more than one, it
may be essentially single-clause learning. Such example will be given later.

Definition 1. Let ci be a clause, which is either from background knowledge
B or hypothesis H. Suppose R = 〈c1, c2, ..., cn〉 is a refutation sequence that
explains a positive example e. Let M be the number of clauses in R that is from
H. It is single-clause learning (SCL) if M = 1; while it is multi-clause learning
(MCL) if M ≥ 1.

2.1 Grammar Learning Example
Fig. 1 shows a simplified version of grammar learning, which is used here to exem-
plify Definition 1. In this grammar learning task, multi-clause and single-clause
learning methods will derive Hmc = {h4, h5, h6, h7} and Hsc = {h1, h2, h3}, re-
spectively. Although there are multiple clauses in Hsc, each of them is derived
independently from different examples by a single-clause learner. Specifically,
h1, h2 and h3 are generalised independently from e1, e2 and e3, respectively. In
contrast, clauses in Hmc are dependent, and they have to be generalised together
in order to explain an example. For instance, hypothesising h4 alone is not able
to complete the refutation proof of the example e1, since the definition about np
is incomplete in B and the type of the word ’unknown’ is also missing from B.
Thus another two clauses, either {h5, h7} or {h8, h9}, have to be derived together
with h4 in order to explain e1.

In this artificially designed example, Hmc is the target hypothesis which is
not derivable by a single-clause learner. Hmc is also more compressive than Hsc,

4

Positive and Negative Examples E:
e1:s([an, unknown, alien, hits, the, house], []).
e2:s([a, small, boy, walks, a, dog], []).
e3:s([a, dog, walks, into, the, house], []).
e4:¬s([dog, hits, a, boy], []).

Hypothesis language L:
Predicates ={s, np, vp, det, noun, verb...}
Variables ={S1, S2, S3, ...}
Constants ={a, the, ...}

Background Knowledge B:

b1:np(S1, S2)← det(S1, S3), noun(S3, S2).
b2:vp(S1, S2)← verb(S1, S2).
b3:vp(S1, S2)← verb(S1, S3), prep(S3, S2).
b4:det([a|S], S). b5:det([an|S], S). b13:det([the|S], S).
b6:noun([dog|S], S). b7:noun([boy|S], S).
b8:noun([house|S], S). b9:noun([alien|S], S).
b10:verb([hits|S], S). b11:adj([small|S], S).
b12:prep([into|S], S).

Part of Hypothesis Space H:
h1:s(S1, S2)← det(S1, S3), S3 = [Word|S4], noun(S4, S5), vp(S5, S6), np(S6, S2).
h2:s(S1, S2)← det(S1, S3), adj(S3, S4), noun(S4, S5), S5 = [Word|S6], np(S6, S2).
h3:s(S1, S2)← np(S1, S3), S3 = [Word|S4], prep(S4, S5), np(S5, S2).
h4:s(S1, S2)← np(S1, S3), vp(S3, S4), np(S4, S2).
h5:np(S1, S2)← det(S1, S3), adj(S3, S4), noun(S4, S2)
h9:np(S1, S2)← det(S1, S3), prep(S3, S4), noun(S4, S2)
h6:verb([walks|S], S). h7:adj([unknown|S], S). h8:prep([unknown|S], S).

Fig. 1: Grammar Learning Example

because Hmc has a shorter description length1than Hsc while covers the same
number of examples. The shorter description length of Hmc results from a multi-
clause learner’s ability to hypothesise multiple dependent clauses. For example,
h4 is simpler than any of h1, h2 and h3, because it is derived together with other
clauses, such as {h5, h7} or {h8, h9}.
2.2 Distinctions from MPL and LMC
As discussed earlier, clauses within Hmc are dependent. This is similar to that
in multiple predicate learning (MPL), where clauses about different predicates
depend on each other. However, the MPL discussed in [19] is essentially single-
clause learning. Because each predicate to be learned are observable and provided
as examples. Therefore there is only one clause about the observed predicate to
be hypothesised for each example. If applying an MPL method to the learning
problem in Fig. 1, it would require the predicates np and vp to be observable
and provided as training examples.

The term learning multiple clauses (LMC) is used to describe a global-
optimisation approach, in which multiple clauses that compressed from the whole
set of examples are refined together, as opposed to a local-optimisation approach
like the covering algorithm, where clauses compressed from a subset of examples
are added to the final H iteratively. However, LMC and MCL are related to dif-
ferent issues. LMC is related to the issue of selecting hypotheses globally rather
than locally. The hypotheses from which it selects can be derived either by MCL
or SCL. Even if a learning algorithm’s search space only consists of single clauses
derived by SCL, its final hypothesis may still have multiple clauses, which are
aggregated from single clauses generalised from different examples. In contrast,
MCL is to do with generalising an example to multiple clauses instead of a single
clause. It can be combined with a selection method that is either global or local.

2.3 Increase in Hypothesis Space
Although the complete hypothesis space of MCL makes it possible to find hy-
potheses with higher compression than SCL, this comes at the cost of a much

1 In this paper, the description length (DL) of a clause is defined by the number of
literals in the clause; while the compression is defined as p− n−DL where p and n
are the number of positive and negative examples covered by the clause.

5

larger search space. Specifically, the upper bound on the hypothesis space of a
single-clause learner is O(2N), where N is the number of distinct atoms derivable

from a hypothesis language. In contrast, it is O(2 2N) for a multi-clause learner,
because it does not ignore the hypotheses with dependent clauses. That is why
it is particularly important for MCL to bound its search space to the candidates
hold for B∧H |= E and makes use of the strong declarative bias that is available
to further constrain the hypothesis space.

3 MC-TopLog
This section introduces top theories first, and then explains how to derive a
hypothesis using a top theory. Finally, we explain how to constrain the search
space to common generalisations using the >DTcD algorithm.

3.1 Top theories as declarative bias
A top theory > is a declarative bias in the form of a logic program. As a context-
free grammar, a top theory consists of the terminals and non-terminals. The ter-
minal literals are those in the hypothesis language, such as s(X,Y) in Fig. 2(b);
while the non-terminal literals like $body(X,Y) in Fig. 2(b) are not allowed
to appear in neither the hypothesis language nor background knowledge. In
order to distinguish the non-terminals, they are prefixed with the symbol ‘$’.
Although the non-terminals do not appear in the hypothesis language, they play
important role in composing the hypothesis language. More examples of various
non-terminals can be found in [8].
Composing Hypothesis Language There are two operators for composing
hypothesis language from a top theory: SLD-resolution and substitution. By
applying SLD-resolution to resolve all the non-terminals in an SLD-derivation
sequence, a hypothesis clause with only terminals can be derived. For example, a
hypothesis clause s(S1, S2)← np(S1, S3), vp(S3, S4), np(S4, S2) can be derived
from an SLD-derivation sequence [Ths, T bnp, T bvp, T bnp, Tend]. Different from
SLD-resolution, which is to do with connecting terminal literals, substitution
is required to deal with ground values in the terminal literals. For example,
abductive hypotheses are ground facts, while their corresponding top theories
are universally quantified, e.g. noun([X|S], S) in Fig. 2(b). All the hypotheses
derived from > by applying SLD-resolution or substitution hold for > |= H.
In this paper, translation refers to the process of deriving H from >, and >
version of H refers to the set of clauses in > that derive H.
Strong Declarative Bias Fig. 2(a) shows a mode declaration, whose corre-
sponding version of a top theory is in Fig. 2(b). This kind of declarative bias
only tells what predicates are allowed in the head/body of a hypothesis clause.
However, a stronger declarative bias may exist for a learning task. In that case,
it is definitely worth to use that information to further constrain the hypothe-
sis space. For example, in the grammar learning task, we know a noun phrase
always consists of a noun and a verb phrase always has a verb. This provides
information about how predicates should be connected. However, there is no
way for a mode declaration to capture this information, while a top theory can
encode it as that in Fig. 2(c). Such a top theory will avoid deriving clauses
like np(S1, S3) ← det(S1, S2), adj(S2, S3), which defines a noun phrase without

6
modeh(1, s(+wlist,−wlist))
modeh(∗, np(+wlist,−wlist))
modeh(∗, vp(+wlist,−wlist))
modeb(1, noun(+wlist,−wlist))
modeb(1, verb(+wlist,−wlist))
modeb(∗, np(+wlist,−wlist))
modeb(∗, vp(+wlist,−wlist))
modeb(1, det(+wlist,−wlist)) ...

modeh(1, det([const|+ wlist],−wlist))
modeh(1, noun([const|+ wlist],−wlist))
modeh(1, verb([const|+ wlist],−wlist))

(a) Mode Declaration

Ths: s(X,Y)← $body(X,Y).
Thnp: np(X,Y)← $body(X,Y).
Thvp: vp(X,Y)← $body(X,Y).
T bnoun: $body(X,Z)← noun(X,Y), $body(Y, Z).
T bverb: $body(X,Z)← verb(X,Y), $body(Y, Z).
T bnp: $body(X,Z)← np(X,Y), $body(Y, Z).
T bvp: $body(X,Z)← vp(X,Y), $body(Y, Z).
T bdet: $body(X,Z)← det(X,Y), $body(Y, Z).
Tend: $body(Z,Z).
Tadet: det([X|S], S).
Tanoun: noun([X|S], S).
Taverb: verb([X|S], S). ...

(b) Top Theory >weak (Weak Declarative Bias)

Ths: s(X,Y)← $body(X,Y).
Thnp noun: np(X,Y)← $body(X,M1), noun(M1,M2), $body(M2, Y).
Thvp verb: vp(X,Y)← $body(X,M1), verb(M1,M2), $body(M2, Y).

... (The rest are the same as that in Fig. 2(b))

(c) Top Theory >strong(Strong Declarative Bias)

Fig. 2: Declarative Bias of Grammar Learning

a noun. Another example of strong bias exists for learning tasks whose target
hypothesis is known to be recursive. In that case, it would be more efficient
if non-recursive clauses are excluded from the hypothesis space. Apart from
the strong bias about the connection of predicates, there are other strong bi-
ases, such as the restriction on function terms. For example, in Yamamoto’s
example of learning odd-numbers, it would be undesirable to have a clause like
odd(s(X)) ← even(s(s(X))) in the hypothesis space, since it will lead to the
expansion of function terms during reasoning.

3.2 >-directed Theory Derivation (>DTD)

>DTD is to derive all the candidate hypotheses that satisfy (1), where `h de-
notes a derivation in at most h resolutions. >DTD uses the top theory to direct
the search for such hypotheses. Specifically, it finds all the refutations of e that
satisfy (2), where `h′ has the same semantic as `h except h′ ≥ h2. It is the use
of > that makes refutations of e derivable, otherwise, e cannot be proved by B
alone, because of the missing clauses to be hypothesised. After deriving all the
refutations of e, each refutation sequence Ri is processed to derive the corre-
sponding Hi. This process includes the following two main steps. (a) Extracting
derivation sequences Di from each refutation sequence Ri. Each extracted se-
quence in Di preserves the same order as that in Ri. This guarantees that the
pair of literals resolved in Di is the same as that in Ri. To facilitate the extrac-
tion, it requires Ri to be recorded as a list with nested sub-lists, instead of a
linear sequence. To facilitate the extraction, it requires Ri to be recorded as a
list with nested sub-lists, instead of a linear sequence. More details about how to
extract Di from the Ri can be found in [8]. (b) Translating Di into Hi, which are
explained in Section 3.1. In the case that ground values are required, the values
to be substituted come from the unification that happens when refuting e using
> and B. Therefore it requires Ri to record the ground values unified during the
refutation. The full description of >DTD algorithm and its corresponding cover
set algorithm are given in Algorithm 1 and 2, respectively. The correctness (ie.
soundness and completeness) of >DTD is proved in Theorem 1. An example of
how >DTD works is given in Example 1.

2 Because apart from the terminals in (1), (2) also have non-terminals to be resolved.

7

B ∧H `h e (e ∈ E+) (1)

B ∧ > `h′ e (e ∈ E+, h′ ≥ h) (2)

> |= H (3)
>DTD resembles Explanation-based Generalisation (EBG)[6] in that both

algorithms find all possible explanations for the seed example first and then
construct generalisations based on the derived explanations. However, EBG
is essentially deductive learning, while >DTD can achieve inductive learning.
Specifically, EBG derives its generalisations from background knowledge, while
>DTD’s generalisations are derived from a top theory, which can compose hy-
pothesis language that do not exist in the background knowledge.

Algorithm 1 >-directed Theory Deriavation (>DTD)

Input: a positive example e, background knowledge B, top theory > and h′

Output: H = {Hi : B ∧Hi `h e}, where h ≤ h′

1: Let H = ∅
2: R = {Ri : Ri = Refs(e,B,>, h)} %Find all the refutations of e that satisfy the formula 2
3: for all Ri in R do
4: Di = DSeqs(Ri) %Obtain derivation sequences Di by extracting > clauses from Ri.
5: Hi = Trans(Di) %Translate Di into a hypothesis theory Hi

6: H = H∪Hi

7: end for
8: return H

Algorithm 2 Cover set algorithm of >DTD

Input: examples E, background knowledge B, top theory > and h′

Output: a hypothesis H
1: Let H = ∅ and E+ = all positive examples in E
2: for all ei ∈ E+ do
3: Hi = TDTD(ei, B,>, h′)
4: H = H∪Hi

5: end for
6: while E+ 6= ∅ do
7: Let H1 be the one in H with highest compression and H = H ∪H1

8: Let E′ be the positive examples covered by H1 and E+ = E+ − E′

9: Let H′ be the ones in H that only cover none of E+ and H = H−H′

10: end while
11: return H

Theorem 1. Correctness of >DTD Given e, B, > and h′, Algorithm 1 re-
turns all candidate hypotheses that satisfy (1), where H is within the hypothesis
space defined by >.
Sketch Proof. Assume the theorem is false. Then either (a) the algorithm does
not terminate or (b) a theory H derived by the algorithm does not satisfy (1) or
(c) the algorithm cannot derive a theory H that is within the hypothesis space
defined by > and satisfies (1).

First consider (a). Due to the restriction of at most h′ resolutions in for-
mula(2), R derived at step 2 is a finite set. Therefore there are only finite num-
ber of loops between step 3 and 7. Also each operation within the loop terminates
in finite time. This refutes (a).

Secondly suppose (b) is true, which means B ∧H ∧ ¬e 2 �. But at step 2, a
refutation Ri that satisfies (2) can be found, which means clauses appearing in Ri

form pairs of complementary literals. Following step 4, derivation sequences Di

8

can be extracted from the refutation sequence Ri. Then at step 5, there are three
possible ways to translate Di into H: (1) only SLD-resolution (2) only substitu-
tion; (3) both SLD-resolution and substitution. In case (1), all the non-terminals
are resolved using SLD-resolution in order to compose hypothesis clauses with
only terminals. The resolved literals must be in pairs, otherwise there will be at
least one literal left unresolved, which means there will be non-terminals remain-
ing in the derived H. If replacing the > clauses in Ri with their corresponding
H, whose only difference from the replaced > clauses are pairs of non-terminals,
then the clauses in this new sequence still form pairs of complementary literals.
Therefore it contradicts the assumption that B ∧ H ∧ ¬e 2 �. In case (2), if
replacing the > clauses with H, which is derived by substituting the variables in
> with the ground values unified during the refutation, then the clauses in this
new sequence still form pairs of complementary literals. Thus it also contradicts
the assumption. In case (3), the assumption is also contradicted considering both
case (1) and (2).

Lastly consider (c), which implies that the corresponding > version of H from
which it is translated cannot be used to prove e with B, that is, the step 2 cannot
be executed. However, considering that H is translatable from >, that is, within
the hypothesis space defined by >, the formula (3) holds. Then (4) holds and (2)
can be derived accordingly. This means a refutation using B and the > version
of H does exist for e. This contradicts the assumption and completes the proof.

B ∧ > |= B ∧H (4)

Example 1. For the learning task in Fig. 1, one of the refutations for e1 is as
shown in Fig. 3. Its corresponding SLD-refutation sequence is recorded as R1 =

[¬e1, [Ths, T bnp, [Thnp noun, T bdet, b5, T bprep, [Taprep(unknown)], Tend, b9, Tend], T bvp,

b2, b10, T bnp, b1, b13, b8, Tend]]. Using the extraction algorithm explained in [8], D1

consisting of three derivation sequences can be extracted from R1. They are:
d1 = [Ths, T bnp, T bvp, T bnp, Tend], d2 = [Thnp noun, T bdet, T bprep, Tend, Tend] and d3 =

[Taprep(unknown)], which are highlighted by the three square boxes in Fig. 1.
Then by applying SLD-derivation and substitution to D1, T1 = {h4, h8, h9} can
be derived, where hi is in Fig. 1.

Fig. 3: Refutation of e1 using clauses in B and >strong(Fig. 2(c)). The dash lines represent

resolving a pair of non-terminal literals, while the solid lines correspond to the terminals.

9

3.3 >-directed Theory Co-Derivation (>DTcD)

In order to constrain the derivable hypotheses to common generalisations,>DTcD
extends >DTD based on co-refutation. Co-refutation combines the refutations
that are the same except the instantiation of variables. Co-refutation is feasible
via program transformation. Specifically, literals of the same predicate can be
combined into one literal by combining their corresponding arguments into a
compound. For example, the refutation proof in Fig 4(c) is the result of com-
bining the two refutation proofs in Fig 4(a) and Fig 4(b). Co-refutation has
the advantage of proving several examples together. More importantly, it proves
them using the same non-ground clauses.

The design of >DTcD is based on the fact that if a theory is common to
multiple examples E, then the refutation proofs of each example in E using that
common theory will have the same structure, that is, the proofs are the same
except the instantiation of variables. Those same-structure refutation proofs can
be combined into co-refutation by combining corresponding arguments. It is the
combined proof that forces the co-generalised examples to be proved using the
same non-ground rules. The next question is how to choose the examples to
be generalised together. Rather than randomly sample a pair of examples as
that in ProGolem, >DTcD takes all positive examples as input, while those do
not fit are filtered out along the derivation of a refutation proof. At the end
of a refutation, not only a hypothesis is derived, but also the maximum set of
examples that can be explained by that hypothesis.

(a) Refutation-proof of e1

(b) Refutation-proof of e2

(c) Co-refutation of e1 and e2
Fig. 4: Combine same structure refutation-proofs

10

The algorithm of >DTcD is given in Algorithm 3. It is the same as Algo-
rithm 1 except (1) its input and output; (2) its step 2 and 3, where it combines
examples to be generalised together into a compound and queries the compound
instead of a single example. The cover set algorithm of >DTcD is also slightly
different from that of >DTD, since the output of >DTcD contains the can-
didate hypotheses for all the positive examples, rather than just one example.
Specifically, the steps 2-5 in Algorithm 2 are replaced with a single step 2 in
Algorithm 4. The correctness of >DTcD is given in Theorem 2. We also give an
example of how >DTcD works in Example 2.

Although >DTcD requires its co-generalised examples to have the same
structure of refutation proofs, it is still applicable to learning recursive theo-
ries. Because the refutations using a recursive theory have at least one recursive
step in common, even though the lengths of refutations may vary because of ap-
plying the recursive theory different times. Details have to be omitted here due
to the limited space, but it is demonstrated in the experiments of learning game
strategies that it is feasible to apply >DTcD for learning recursive theories.

B ∧H `h Ei (5)

B ∧ > `h′ Ei (6)

where h′ ≥ h ∧ (Ei ⊂ E+ ∧ |Ei| > 1) ∧ (∀ej ∈ Ei, sameRefStru(ej)) (7)

Algorithm 3 >-directed Theory co-Deriavation (>DTcD)

Input: All positive examples E+ , background knowledge B, top theory > and h′

Output: H = {Hi : B ∧Hi `h Ei}, where Ei ⊂ E+, |Ei| > 1 and h ≤ h′

1: Let H = ∅
2: ecomp = Aggr(E+) %Aggregate all positive examples E+ into a compound example ecomp

3: R = {Ri : Ri = Refs(ecomp, B,>, h)} %Find all the refutations that satisfy the formula 6
4: for all Ri in R do
5: Di = DSeqs(Ri) %Obtain derivation sequences Di by extracting > clauses from Ri.
6: Hi = Trans(Di) %Translate Di into a hypothesis theory Hi

7: H = H∪Hi

8: end for
9: return H

Algorithm 4 Cover set algorithm of >DTcD

Input: examples E, background knowledge B, top theory > and h′

Output: a hypothesis H
1: Let H = ∅ and E+ = all positive examples in E
2: H = TDTcD(E+, B,>, h′)

3: while E+ 6= ∅ do
4: Let H1 be the one in H with highest compression and H = H ∪H1

5: Let E′ be the positive examples covered by H1 and E+ = E+ − E′

6: Let H′ be the ones in H that only cover none of E+ and H = H−H′

7: end while
8: return H

Theorem 2. Correctness of >DTcD Given E+, B, > and h′, Algorithm 3
returns all candidate hypotheses that hold for (5), where (1) H is within the
hypothesis space defined by >; (2) Ei ⊂ E+, |Ei| > 1 and each ej ∈ Ei shares
the same structure of refutation proofs.
Sketch Proof. Assume the theorem is false. Then either (a) the algorithm does
not terminate or (b) a theory H is derived by the algorithm as a co-generalisation
of Ei, while ∃ej ∈ Ei, B ∧H 2 ej. or (c) the algorithm cannot derive a theory
H that is within the hypothesis space defined by > and satisfies (5).

11

First consider (a). Similar to that in the proof of Theorem 1, case (a) is
refuted because: (1) the bound h′ on the resolution steps guarantees that R is a
finite set; (2) each operation within the for-loop terminates in finite time.

Secondly suppose (b) is true, but at step 3, a co-refutation of Ei using B
and > can be found, which means ∀ej ∈ Ei, B ∧ > `h′ ej. Considering that the
rest of the algorithm is the same as that in Algorithm1 and the correctness of
Algorithm1 which is proved in Theorem 1, the hypothesis H derived will satisfy
∀ej ∈ Ei, B ∧H `h ej, which contradicts the assumption and refutes (b).

Lastly consider (c), which implies that the step 3 cannot be executed either
because (1) the corresponding > version of H from which it is translated cannot
be used to prove Ei with B; or (2) the refutation of each ej in Ei cannot be com-
bined into a co-refutation. For case (1), similar to that in the proof of Theorem 1,
(6) can be derived from the formulae (3) and (5). This means refutation using
B and the > version of H does exist for the set of examples Ei that share the
same structure of refutation proofs. The case (2) contradicts the fact that each
ej ∈ Ei shares the same structure of refutation proofs so that their refutations
can be combined, therefore completes the proof.

Example 2. For all the positive examples in Fig. 1, the>DTcD method first com-
bines them into a compound example as s([[an, unknown, alien, hits, the, house], [a,

small, boy, walks, a, dog], [a, dog, walks, into, the, house]], [[], [], []]), and then proves it
using clauses in B and >. In this way, we can derive the hypothesis H2 =
{h4, h5, h7} that co-generalises examples e1 and e2. Please note that H2 does
not cover e3, since e3 is filtered out in the refutation using the > version of
H2. As visualised in Fig. 5, e3 would be filtered out at the goal marked with a
cross symbol, because the word ‘dog’ in e3 is known to be a noun, rather than
an adjective, thus it has to be filtered out in order to succeed the other part of
the compound goal. Here we also give an example of the hypotheses that are
pruned due to non-common generalisations: the hypothesis H1 = {h4, h8, h9}
derived when generalising e1 alone is no longer derivable because apart from e1
it cannot generalise either e2 or e3. Specifically, both e2 and e3 have their second
words known as non-prepositions according to the given background knowledge,
therefore they do not fit into the co-refutation using the > version of H1.

€

adj([[unknown,small,dog]|S], S).
Fig. 5: Filter

4 Experiments
The null hypotheses to be empirically investigated in the study are as follows. (a)
A multi-clause learning method does not have higher predictive accuracies than a
single-clause learning method. MC-TopLog and Progol5 [12] are the two ILP sys-
tems used in this experiment. (b) The search space of a co-generalisation method
(>DTcD) is not smaller than that of a solo-generalisation method (>DTD). All
used materials can be found at http://ilp.doc.ic.ac.uk/mcTopLog.

12

4.1 Grammar Learning
Materials The complete theory for parsing a grammar is in Fig. 6. The back-
ground knowledge B for each learning task is generated by randomly removing
certain number of clauses from the complete theory, and those left-out clauses
form the corresponding target hypothesis. Part of the training examples are in
Fig. 7. There are 50 training examples and half of them are negative. Therefore
the default accuracy is 50%.
s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S2).
s(S1,S2) :- np(S1,S3), vp(S3,S4), np(S4,S5), prep(S5,S6), np(S6,S2).
np(S1,S2) :- det(S1,S3), noun(S3,S2).
np(S1,S2) :- det(S1,S3), adj(S3,S4), noun(S4,S2).
vp(S1,S2) :- verb(S1,S2).
vp(S1,S2) :- verb(S1,S3), prep(S3,S2).
det([a|S],S). det([the|S],S).
adj([big|S],S). adj([small|S],S). adj([nasty|S],S).
noun([man|S],S). noun([dog|S],S). noun([house|S],S). noun([ball|S],S).
verb([takes|S],S). verb([walks|S],S). verb([hits|S],S).
prep([at|S],S). prep([to|S],S). prep([on|S],S). prep([in|S],S). prep([into|S],S).

Fig. 6: A Complete Theory for Parsing a Grammar
s([the,dog,takes,the,ball,to,the,house],[]). ¬s([the, dog],[]).
s([the,small,dog,walks,on,the,house],[]). ¬s([dog,the,man,the,walks],[]).
s([a,ball,hits,the,dog],[]). ¬s([ball,a,dog,a,hits],[]).

Fig. 7: Part of the Training Examples for Grammar Learning

Methods The null hypothesis(a) was investigated by comparing the learning
results of MC-TopLog and Progol5[12] for randomly chosen samples. For each
size of leave-out, we sampled ten times and the predictive accuracies results of
ten samples were averaged. The predictive accuracies were measured by leave-
one-out cross validation. The null hypothesis(b) was examined by comparing
the search spaces and running time of >DTD and >DTcD. The search space is
measured by the number of candidate hypotheses generated during learning.

Results The predictive accuracies are given in Fig. 8, where the x-axis de-
notes the percentage of clauses remaining in the background knowledge. The
smaller the percentage, the more clauses are left-out and to be learned. The
label ’before’ means before learning, and its accuracy line shows the degree of
incompleteness in the background knowledge. Progol’s accuracy line is above
the ’before learning’ line, which shows the effectiveness in learning. However,
when the percentage of remaining clauses decreases to half, Progol5 fails to re-
construct the multiple missing clauses due to its single-clause limitation, there-
fore its accuracy drops to default. In contrast, MC-TopLog’s ability of deriving
multi-clause hypotheses makes it possible to hypothesise the missing clauses or
their approximations even when half of the complete theory is left-out. Therefore
MC-TopLog’s predictive accuracies are always higher than that of Progol5 in this
experiment, and their difference increases as the background knowledge becomes
more incomplete. Thus the null hypothesis (a) is refuted. The accuracy line of
MC-TopLog actually has two lines overlapped, thus for this dataset there is no
significant difference between >DTD and >DTcD in terms of accuracies. Fig. 11
shows that the search space is reduced dramatically when the learning method
switches from >DTD to >DTcD, thus the null hypothesis (b) is refuted. The
running time compared in Fig. 12 shows similar pattern to that in Fig. 11, which
further confirms the improvement of >DTcD over >DTD in terms of efficiency.

13

 50

 60

 70

 80

 90

 100

 110

 50 60 70 80 90 100

P
re

d
ic

ti
v
e

ac
cu

ra
cy

 (
%

)

Remaining background clauses (%)

MC-TopLog

Progol5

Before

Fig. 8: Predictive Accuracies (Grammar)

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50

P
re

d
ic

ti
v
e

A
cc

u
ra

cy
 (

%
)

No. of training examples

MC-TopLog (TDTcD)

Progol5

Fig. 9: Predictive Accuracies (Nim)

4.2 Learning Game Strategies

Materials We choose the game Nim [16] for this experiment, because the tar-
get hypothesis not only has recursion, but also involves non-observable predicate
learning. The learning task is to generalise a theory for identifying a P-position,
which is a position that players are guaranteed to win if continue to play opti-
mally, that is, identifying the precondition for grasping the winning strategy. Al-
though [16] has suggested a single-clause hypothesis as play(HeapN1, HeapN2,
HeapN3) ← xor(HeapN1, HeapN2, HeapN3), this is not the target hypothesis
unless the number of heaps N is fixed to be three. To handle a more general
case where N is not fixed, that hypothesis is too specific and needs to be further
generalised. The background knowledge available for this learning task includes
the definition of mathematical functions like and, or and xor. The training ex-
amples are in the form of play([3, 4, 5]), in which the number sequence records
the number of sticks in each heap.

Methods Similar to the experiment of grammar learning, the null hypothe-
sis(a) was investigated by comparing the learning results of MC-TopLog and Pro-
gol5. However, different from the previous experiment, the background knowl-
edge is fixed, since its size is too small to be randomly sampled. The accuracy
curves in Fig. 9 are drawn with the number of examples on the x-axis. The null
hypothesis(b) was examined by comparing the search spaces and running time
of >DTD and >DTcD. Again, we varied the number of examples to see how the
search space shrinks with more examples available to be co-generalised.

Results As shown in Fig. 9, MC-TopLog only needs 6 examples to achieve
accuracy of 100%, while Progol5 is not able to achieve accuracy of 100% even
given 50 examples. Therefore the null hypothesis (a) is refuted. Progol’s signif-
icantly lower accuracies results from its single-clause hypotheses which are too
specific. For example, ∀ci ∈ Hs, Hm |= ci, where Hs and Hm are in Fig. 10(a)
and 10(b), respectively. Hm not only consists of a recursive clause, but also
involves a non-observable predicate compute, therefore even methods that can
learn recursive theories (e.g. [10]) are not able to derive Hm.

play([HeapN1, HeapN2, HeapN3])←
xor(HeapN1, HeapN2, HeapN3).

play([HeapN1, HeapN2, HeapN3, HeapN4])←
xor(HeapN1, HeapN2,MidResult),
xor(MidResult,HeapN3, HeapN4).

(a) Hs by Progol

play(Heaps)← compute(Heaps, 0, Result).
compute([Heap|Heaps], ResultSofar,Result)←

xor(Heap,ResultSofar,NewResultSofar),
compute(Heaps,NewResultSofar,Result).

(b) Hm by MC-TopLog

Fig. 10: Hypotheses suggested by different ILP systems

14

 0

 10000

 20000

 30000

 40000

 50000

 50 60 70 80 90 100

N
o
.
o
f

S
ea

rc
h
 N

o
d
es

Remaining background clauses (%)

TDTD
TDTcD

Fig. 11: Search Spaces (Grammar)

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 50 60 70 80 90 100

T
im

e
(m

se
c.

)

Remaining background clauses (%)

TDTD
TDTcD

Fig. 12: Running Time (Grammar)

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 0 5 10 15 20 25 30 35 40 45 50

N
o

.
o

f
se

ar
ch

 n
o

d
es

No. of training examples

TDTcD

Fig. 13: Search Spaces (Nim)

 600

 800

 1000

 1200

 1400

 1600

 1800

 2000

 2200

 2400

 0 5 10 15 20 25 30 35 40 45 50

T
im

e
(m

se
c.

)
No. of training examples

TDTcD

Fig. 14: Running Time (Nim)

MC-TopLog’s accuracy line in Fig. 9 is derived under the learning mode of
co-generalisation,while solo-generalisation is impractical for this learning task.
Because there are so many mathematical functions which can be fit into a single
example that the size of candidate hypotheses is much larger than what YAP (a
Prolog interpreter) can handle. Therefore the null hypothesis (b) is refuted since
Fig. 13 shows that >DTcD is applicable for this learning task where >DTD
fails due to a too large search space. Fig. 13 also shows that the power of co-
generalisation is more effective with more examples. As can be seen from Fig. 13,
the number of‘search nodes decreases dramatically with increasing number of
examples. This is consistent with the fact that the common part of different sets
shrinks as the number of sets increases. In terms of running time, it decreases
accordingly with the decreasing search space, as shown in Fig. 14. However, the
running time increases slightly after the number of examples increases to 20.
This is due to the counteracting effect of binding more variables.

5 Conclusions and Future work

The simplified version of grammar learning shows the importance of having a
complete method, even for learning problems without recursion and mutually
dependent predicates. Both >DTD and >DTcD are sound and complete for
deriving hypotheses, but >DTcD is more efficient than >DTD, while the im-
provement in efficiency does not come at the cost of lower predictive accuracy.
We intend to compare MC-TopLog to other complete systems in future work.

Acknowledgements

This work is part of the Syngenta University Innovation Centre (UIC) on Systems
Biology at Imperial College, which is funded by Syngenta Ltd. The first author
also would like to thank the Royal Academy of Engineering and Microsoft for
funding his present 5 year Research Chair. The authors also want to thank
Changze Xu for providing the data set about learning game strategies.

15

References

1. H. Blockeel and L. De Raedt. Top-down induction of first order logical decision
trees. Artificial Intelligence, 101(1–2):285–297, 1998.

2. H. Boström and P. Idestam-Almquist. Induction of logic programs by example-
guided unfolding. The Journal of Logic Programming, 40:159–183, 1999.

3. I. Bratko. Refining complete hypotheses in ILP. In Proceedings of ILP-99, volume
1634, pages 44–55, Berlin, 1999. Springer-Verlag.

4. W. Cohen. Grammatically biased learning: Learning logic programs using an ex-
plicit antecedent description language. Artificial Intelligence, 68:303–366, 1994.

5. K Inoue. Induction as consequence finding. Machine Learning, 55:109–135, 2004.
6. S.T. Kedar-Cabelli and L.T. McCarty. Explanation-based generalization as res-

olution theorem proving. In Proceedings of ICML-87, pages 383–389, Los Altos,
1987. Morgan Kaufmann.

7. T. Kimber, K. Broda, and A. Russo. Induction on failure: Learning connected
Horn theories. In LPNMR 2009, pages 169–181, Berlin, 2009. Springer-Verlag.

8. D. Lin. Efficient, complete and declarative search in inductive logic programming.
Master’s thesis, Imperial College London, September 2009.

9. D. Lin, J. Chen, H. Watanabe, S.H. Muggleton, P. Jain, and et al. Does multi-
clause learning help in real-world applications? In Proceedings of ILP-11, Berlin,
2012. Springer-Verlag.

10. D. Malerba. Learning recursive theories in the normal ilp setting. Fundamenta
Informaticae, 57:39–77, 2003.

11. S.H. Muggleton. Inverse entailment and Progol. New Generation Computing,
13:245–286, 1995.

12. S.H. Muggleton and C.H. Bryant. Theory completion using inverse entailment. In
Proceedings of ILP-00, pages 130–146, Berlin, 2000. Springer-Verlag.

13. S.H. Muggleton and C. Feng. Efficient induction of logic programs. In ALT90,
pages 368–381, Tokyo, 1990. Ohmsha.

14. S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. Toplog: ILP using a logic
program declarative bias. In ICLP 2008, pages 687–692, 2008.

15. S.H. Muggleton, J. Santos, and A. Tamaddoni-Nezhad. Progolem: a system based
on relative minimal generalisation. In ILP09, pages 131–148. Springer-Verlag, 2010.

16. S.H. Muggleton and C. Xu. Can ILP learn complete and correct game strategies?
In Late-breaking proceedings of ILP. Imperial College London Press, 2011.

17. G.D. Plotkin. Automatic Methods of Inductive Inference. PhD thesis, Edinburgh
University, August 1971.

18. L. De Raedt and L. Dehaspe. Clausal discovery. Machine Learning, 26:99–146,
1997.

19. L. De Raedt, N. Lavrac, and S. Dzeroski. Multiple predicate learning. In IJCAI,
pages 1037–1043, 1993.

20. O. Ray. Nonmonotonic abductive inductive learning. Journal of Applied Logic,
7(3):329–340, 2009.

21. J.C. Reynolds. Transformational systems and the algebraic structure of atomic
formulas. In B. Meltzer and D. Michie, editors, Machine Intelligence 5, pages
135–151. Edinburgh University Press, Edinburgh, 1969.

22. A. Yamamoto. Which hypotheses can be found with inverse entailment? In
N. Lavrač and S. Džeroski, editors, ILP97, pages 296–308. Springer-Verlag, 1997.

	MC-TopLog: Complete Multi-clause Learning Guided by a Top Theory
	Introduction
	Common Generalisation
	Top Theory and TopLog Family

	Multi-clause Learning vs. Single-clause Learning
	Grammar Learning Example
	Distinctions from MPL and LMC
	Increase in Hypothesis Space

	MC-TopLog
	Top theories as declarative bias
	-directed Theory Derivation (DTD)
	-directed Theory Co-Derivation (DTcD)

	Experiments
	Grammar Learning
	Learning Game Strategies

	Conclusions and Future work

